Abstract
AbstractSequencing costs currently prohibit the application of single-cell mRNA-seq to many biological and clinical analyses. Targeted single-cell mRNA-sequencing reduces sequencing costs by profiling reduced gene sets that capture biological information with a minimal number of genes. Here we introduce an active learning method that identifies minimal but highly informative gene sets that enable the identification of cell types, physiological states and genetic perturbations in single-cell data using a small number of genes. Our active feature selection procedure generates minimal gene sets from single-cell data by employing an active support vector machine (ActiveSVM) classifier. We demonstrate that ActiveSVM feature selection identifies gene sets that enable ~90% cell-type classification accuracy across, for example, cell atlas and disease-characterization datasets. The discovery of small but highly informative gene sets should enable reductions in the number of measurements necessary for application of single-cell mRNA-seq to clinical tests, therapeutic discovery and genetic screens.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Computer Science (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献