The effect of data transformation on low-dimensional integration of single-cell RNA-seq

Author:

Park Youngjun,Hauschild Anne-Christin

Abstract

Abstract Background Recent developments in single-cell RNA sequencing have opened up a multitude of possibilities to study tissues at the level of cellular populations. However, the heterogeneity in single-cell sequencing data necessitates appropriate procedures to adjust for technological limitations and various sources of noise when integrating datasets from different studies. While many analysis procedures employ various preprocessing steps, they often overlook the importance of selecting and optimizing the employed data transformation methods. Results This work investigates data transformation approaches used in single-cell clustering analysis tools and their effects on batch integration analysis. In particular, we compare 16 transformations and their impact on the low-dimensional representations, aiming to reduce the batch effect and integrate multiple single-cell sequencing data. Our results show that data transformations strongly influence the results of single-cell clustering on low-dimensional data space, such as those generated by UMAP or PCA. Moreover, these changes in low-dimensional space significantly affect trajectory analysis using multiple datasets, as well. However, the performance of the data transformations greatly varies across datasets, and the optimal method was different for each dataset. Additionally, we explored how data transformation impacts the analysis of deep feature encodings using deep neural network-based models, including autoencoder-based models and proto-typical networks. Data transformation also strongly affects the outcome of deep neural network models. Conclusions Our findings suggest that the batch effect and noise in integrative analysis are highly influenced by data transformation. Low-dimensional features can integrate different batches well when proper data transformation is applied. Furthermore, we found that the batch mixing score on low-dimensional space can guide the selection of the optimal data transformation. In conclusion, data preprocessing is one of the most crucial analysis steps and needs to be cautiously considered in the integrative analysis of multiple scRNA-seq datasets.

Funder

German Federal Ministry of Education and Research

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3