Synergistic denitrification mechanism of domesticated aerobic denitrifying bacteria in low-temperature municipal wastewater treatment

Author:

Wang Fan,Cui Qin,Liu Wenai,Jiang Weiqing,Ai Shengshu,Liu Wanqi,Bian DejunORCID

Abstract

AbstractTo address the problems of low efficacy and low microbial activity in low-temperature municipal wastewater treatment, this study utilized an air-lift micro-pressure internal circulation integrated reactor (AMICIR). Through controlling the amount of aeration and dissolved oxygen (DO) in the reactor, AMICIR creates alternating aerobic and anaerobic environments, explores the enrichment conditions of aerobic denitrifying bacteria, examines the changes in pollutant removal efficiency and the characteristics of bacterial colony structure during the process of enrichment of aerobic denitrifying bacteria in the system, and reveals the mechanism of nitrogen removal by aerobic denitrifying bacteria cooperating with anaerobic denitrifying bacteria in the low-temperature municipal wastewater treatment system. Experimental results showed average removal rates of NH4+-N, chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) reaching 93.85%, 89.30%, 92.75%, and 75.4%, respectively. The microorganisms secreted large amounts of proteins and polysaccharides, forming zoogloea and anaerobic microenvironments conducive to traditional denitrification reactions. IlluminaMiSeq sequencing analysis revealed the presence of anaerobic phyla. The system was enriched with a large number of microorganisms, and aerobic denitrifying bacteria (Flavobacterium, Rhodoferax, and Pseudomonas) were successfully cultured. Flavobacterium emerged as the dominant species, with relative abundance ranging from 18.56% to 22.60%. Functional gene prediction indicated high abundance of aerobic denitrification genes, such as napA. Aerobic denitrifying bacteria were successfully enriched in the system to improve nitrogen removal from municipal wastewater at low temperatures.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3