Modeling and Control Strategies for Energy Management in a Wastewater Center: A Review on Aeration

Author:

Jamaludin Mukhammad1ORCID,Tsai Yao-Chuan1ORCID,Lin Hao-Ting1,Huang Chi-Yung2ORCID,Choi Wonjung3ORCID,Chen Jiang-Gu4,Sean Wu-Yang1

Affiliation:

1. Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402202, Taiwan

2. Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung City 41170, Taiwan

3. Department of Chemical Engineering, Changwon National University, Changwon 51140, Republic of Korea

4. Taoyuan Northern District Reclaimed Center, Taoyuan 33071, Taiwan

Abstract

Effective modeling and management are critical in wastewater treatment facilities since the aeration process accounts for 65–70% of the overall energy consumption. This study assesses control strategies specifically designed for different sizes of WWTP, analyzing their economic, environmental, and energy-related effects. Small WWTPs see advantages from the utilization of on/off and proportional–integral–derivative (PID) control methods, resulting in 10–25% energy savings and the reduction in dissolved oxygen (DO) levels by 5–30%. Cascade control and model predictive control (MPC) improve energy efficiency by 15–30% and stabilize DO levels by 15–35% in medium-sized WWTPs. Advanced WWTPs that utilize technologies such as MPC integrated with artificial intelligence (AI) and machine learning (ML) can decrease energy usage by 30–40% and enhance DO levels by 35–40%. Life cycle assessment (LCA) demonstrates substantial decreases in greenhouse gas (GHG) emissions: 5–20% for small, 10–25% for medium, and 30–35% for large WWTPs. These findings illustrate the feasibility and expandability of these tactics in both controlled laboratory environments and real-world situations, emphasizing the significance of customized methods for improving energy efficiency and sustainability in wastewater treatment. Subsequent investigations should prioritize integrating renewable energy sources and resolving obstacles in developing nations to enhance wastewater treatment plants’ energy efficiency and sustainability.

Funder

This research was funded by Dept. of Water Quality Protection, Ministry of Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3