Abstract
AbstractOne of the most fascinating aspects of quantum networks is their capability to distribute entanglement as a nonlocal communication resource1. In a first step, this requires network-ready devices that can generate and store entangled states2. Another crucial step, however, is to develop measurement techniques that allow for entanglement detection. Demonstrations for different platforms3–13 suffer from being not complete, destructive or local. Here, we demonstrate a complete and nondestructive measurement scheme14–16 that always projects any initial state of two spatially separated network nodes onto a maximally entangled state. Each node consists of an atom trapped inside an optical resonator from which two photons are successively reflected. Polarization measurements on the photons discriminate between the four maximally entangled states. Remarkably, such states are not destroyed by our measurement. In the future, our technique might serve to probe the decay of entanglement and to stabilize it against dephasing via repeated measurements17,18.
Funder
EC | Horizon 2020 Framework Programme
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Fundación Cellex
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献