Abstract
Interfacing cold atoms with integrated nanophotonic devices could offer new paradigms for engineering atom-light interactions and provide a potentially scalable route for quantum sensing, metrology, and quantum information processing. However, it remains a challenging task to efficiently trap a large ensemble of cold atoms on an integrated nanophotonic circuit. Here, we demonstrate direct loading of an ensemble of up to 70 atoms into an optical microtrap on a nanophotonic microring circuit. Efficient trap loading is achieved by employing degenerate Raman-sideband cooling in the microtrap, where a built-in spin-motion coupling arises directly from the vector light shift of the evanescent-field potential on a microring. Atoms are cooled into the trap via optical pumping with a single free space beam. We have achieved a trap lifetime approaching 700 ms under continuous cooling. We show that the trapped atoms display large cooperative coupling and superradiant decay into a whispering-gallery mode of the microring resonator, holding promise for explorations of new collective effects. Our technique can be extended to trapping a large ensemble of cold atoms on nanophotonic circuits for various quantum applications.
Published by the American Physical Society
2024
Funder
Air Force Office of Scientific Research
National Science Foundation
Purdue University Libraries Open Access Publishing Fund
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献