Method to deterministically generate large-amplitude optical cat states

Author:

Li Zheng-HongORCID,Yu Fei,Li Zhen-Ya,Al-Amri M.ORCID,Zubairy M. SuhailORCID

Abstract

AbstractCat states, as an important resource in the study of macroscopic quantum superposition and quantum information applications, have garnered widespread attention. To date, preparing large-sized optical cat states has remained challenging. We demonstrate that, by utilizing interaction-free measurement and the quantum Zeno effect, even a fragile quantum microscopic system can deterministically control and become entangled with strong light fields, thereby generating large-amplitude optical cat states. During the entire preparation process, our method ensures that the microscopic system functions within a weak field environment, so that its quantum property can be protected. Furthermore, we show that the preparation of cat states is possible even when the quantum microsystem suffers from significant photon loss, provided that optical losses from classical devices are kept low, which implies that the fidelity of the cat state can be enhanced by improvements to and the perfection of the classical optical system.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A No-Go Result on Observing Quantum Superpositions;Foundations of Physics;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3