The NIH Somatic Cell Genome Editing program
Author:
Saha KrishanuORCID, , Sontheimer Erik J.ORCID, Brooks P. J., Dwinell Melinda R., Gersbach Charles A.ORCID, Liu David R.ORCID, Murray Stephen A., Tsai Shengdar Q.ORCID, Wilson Ross C.ORCID, Anderson Daniel G.ORCID, Asokan AravindORCID, Banfield Jillian F.ORCID, Bankiewicz Krystof S., Bao Gang, Bulte Jeff W. M., Bursac Nenad, Campbell Jarryd M., Carlson Daniel F.ORCID, Chaikof Elliot L.ORCID, Chen Zheng-YiORCID, Cheng R. Holland, Clark Karl J.ORCID, Curiel David T., Dahlman James E., Deverman Benjamin E., Dickinson Mary E., Doudna Jennifer A., Ekker Stephen C.ORCID, Emborg Marina E.ORCID, Feng GuopingORCID, Freedman Benjamin S., Gamm David M.ORCID, Gao GuangpingORCID, Ghiran Ionita C., Glazer Peter M.ORCID, Gong Shaoqin, Heaney Jason D.ORCID, Hennebold Jon D., Hinson John T., Khvorova AnastasiaORCID, Kiani Samira, Lagor William R., Lam Kit S., Leong Kam W.ORCID, Levine Jon E., Lewis Jennifer A.ORCID, Lutz Cathleen M., Ly Danith H., Maragh Samantha, McCray Paul B.ORCID, McDevitt Todd C.ORCID, Mirochnitchenko Oleg, Morizane Ryuji, Murthy Niren, Prather Randall S.ORCID, Ronald John A., Roy Subhojit, Roy Sushmita, Sabbisetti VenkataORCID, Saltzman W. MarkORCID, Santangelo Philip J.ORCID, Segal David J.ORCID, Shimoyama Mary, Skala Melissa C.ORCID, Tarantal Alice F., Tilton John C., Truskey George A., Vandsburger Moriel, Watts Jonathan K., Wells Kevin D., Wolfe Scot A.ORCID, Xu Qiaobing, Xue Wen, Yi Guohua, Zhou JiangbingORCID
Abstract
AbstractThe move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium’s plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled—along with validated datasets—into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit—and the knowledge generated by its applications—as a means to accelerate the clinical development of new therapies for a wide range of conditions.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference155 articles.
1. High, K. A. & Roncarolo, M. G. Gene therapy. N. Engl. J. Med. 381, 455–464 (2019). 2. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020). 3. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019). 4. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020). 5. Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|