Deep learning of causal structures in high dimensions under data limitations

Author:

Lagemann KaiORCID,Lagemann Christian,Taschler BerndORCID,Mukherjee SachORCID

Abstract

AbstractCausal learning is a key challenge in scientific artificial intelligence as it allows researchers to go beyond purely correlative or predictive analyses towards learning underlying cause-and-effect relationships, which are important for scientific understanding as well as for a wide range of downstream tasks. Here, motivated by emerging biomedical questions, we propose a deep neural architecture for learning causal relationships between variables from a combination of high-dimensional data and prior causal knowledge. We combine convolutional and graph neural networks within a causal risk framework to provide an approach that is demonstrably effective under the conditions of high dimensionality, noise and data limitations that are characteristic of many applications, including in large-scale biology. In experiments, we find that the proposed learners can effectively identify novel causal relationships across thousands of variables. Results include extensive (linear and nonlinear) simulations (where the ground truth is known and can be directly compared against), as well as real biological examples where the models are applied to high-dimensional molecular data and their outputs compared against entirely unseen validation experiments. These results support the notion that deep learning approaches can be used to learn causal networks at large scale.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Reference47 articles.

1. Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms (MIT Press, 2017).

2. Arjovsky, M., Bottou, L., Gulrajani, I. & Lopez-Paz, D. Invariant risk minimization. Preprint at https://arxiv.org/abs/1907.02893 (2019).

3. Heinze-Deml, C., Maathuis, M. H. & Meinshausen, N. Causal structure learning. Annu. Rev. Stat. Appl. 5, 371–391 (2018).

4. Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction and Search (MIT Press, 2000).

5. Shimizu, S., Hoyer, P. O., Hyvärinen, A. & Kerminen, A. A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3