Uncovering wall-shear stress dynamics from neural-network enhanced fluid flow measurements

Author:

Lagemann Esther1ORCID,Brunton Steven L.1ORCID,Lagemann Christian1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

Accurate prediction and measurement of wall-shear stress dynamics in fluid flows is crucial in domains as diverse as transportation, public utility infrastructure, energy technology and human health. However, we still lack adequate experimental methods that simultaneously capture the temporal and the spatial behaviour of the wall-shear stress. In this contribution, we present a holistic approach that derives these dynamics from particle-image velocimetry (PIV) measurements using a deep optical flow estimator with physical knowledge. While the experimental measurements resemble state-of-the-art PIV set-ups, the established particle image processing is replaced by a deep neural network specifically tailored to extract velocity and wall-shear stress information. Since this WSSflow framework operates at the original image resolution, it provides the respective flow field information at a much higher spatial resolution compared with state-of-the-art PIV processing. The results show that this per-pixel approach is essential for an accurate wall-shear stress estimation. The validity and physical correctness of the derived flow quantities are demonstrated with synthetic and real-world experimental data of a turbulent channel flow, a wavy turbulent channel flow and an elastic blood vessel flow. Where baseline data are available for comparison, the instantaneous and time-averaged wall-shear stress predictions accurately follow the ground truth data.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncovering wall-shear stress dynamics from neural-network enhanced fluid flow measurements;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3