Computational modeling of aging-related gene networks: a review

Author:

Freitas José Américo Nabuco Leva Ferreira,Bischof Oliver

Abstract

The aging process is a complex and multifaceted phenomenon affecting all living organisms. It involves a gradual deterioration of tissue and cellular function, leading to a higher risk of developing various age-related diseases (ARDs), including cancer, neurodegenerative, and cardiovascular diseases. The gene regulatory networks (GRNs) and their respective niches are crucial in determining the aging rate. Unveiling these GRNs holds promise for developing novel therapies and diagnostic tools to enhance healthspan and longevity. This review examines GRN modeling approaches in aging, encompassing differential equations, Boolean/fuzzy logic decision trees, Bayesian networks, mutual information, and regression clustering. These approaches provide nuanced insights into the intricate gene-protein interactions in aging, unveiling potential therapeutic targets and ARD biomarkers. Nevertheless, outstanding challenges persist, demanding more comprehensive datasets and advanced algorithms to comprehend and predict GRN behavior accurately. Despite these hurdles, identifying GRNs associated with aging bears immense potential and is poised to transform our comprehension of human health and aging. This review aspires to stimulate further research in aging, fostering the innovation of computational approaches for promoting healthspan and longevity.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3