Adaptive Strategies for Materials Design using Uncertainties
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://www.nature.com/articles/srep19660.pdf
Reference35 articles.
1. Bhadeshia, H. K. D. H. Neural Networks in Materials Science. ISIJ International 39, 966–979 (1999).
2. Balachandran, P. V., Broderick, S. R. & Rajan, K. Identifying the inorganic gene for high-temperature piezoelectric perovskites through statistical learning. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 467, 2271–2290 (2011).
3. Saad, Y. et al. Data mining for materials: Computational experiments with AB compounds. Phys. Rev. B 85, 104104 (2012).
4. Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Scientific Reports 3, 2810 (2013).
5. Seko, A., Maekawa, T., Tsuda, K. & Tanaka, I. Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Phys. Rev. B 89, 054303 (2014).
Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Parameter Optimization of a Surface Mechanical Rolling Treatment Process to Improve the Surface Integrity and Fatigue Property of FV520B Steel by Machine Learning;Materials;2024-09-13
2. GP+: A Python library for kernel-based learning via Gaussian processes;Advances in Engineering Software;2024-09
3. Machine learning techniques for predictive modelling and uncertainty quantification of the mechanical properties of woven carbon fibre composites;Materials Today Communications;2024-08
4. Recent progress on machine learning with limited materials data: Using tools from data science and domain knowledge;Journal of Materiomics;2024-07
5. Designing semiconductor materials and devices in the post-Moore era by tackling computational challenges with data-driven strategies;Nature Computational Science;2024-05-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3