Affiliation:
1. Associated Engineering Research Center of Mechanics and Mechatronic Equipment, Shandong University, Weihai 264209, China
Abstract
Surface integrity is a critical factor that affects the fatigue resistance of materials. A surface mechanical rolling treatment (SMRT) process can effectively improve the surface integrity of the material, thus enhancing the fatigue property. In this paper, an analysis of variance (ANOVA) and signal-to-noise ratio (SNR) are performed by orthogonal experimental design with SMRT parameters as variables and surface integrity indicators as optimization objectives, and the support vector machine-active learning (SVM-AL) model is proposed based on machine learning theory. The entire model includes three rounds of AL processes. In each round of the AL process, the SMRT parameters with relative average deviation and high output values from cross-validation are selected for the additional experimental supplement. The results show that the prediction accuracy and generalization ability of the SVM-AL model are significantly improved compared to the support vector machine (SVM) model. A fatigue test was also carried out, and the fatigue property of the SMRT specimens predicted by the SVM-AL model is also higher than that of the other specimens.
Funder
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China