Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning

Author:

Balachandran Prasanna V.1,Broderick Scott R.1,Rajan Krishna1

Affiliation:

1. Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011, USA

Abstract

This paper develops a statistical learning approach to identify potentially new high-temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data-driven approach to initiate our search. This is accomplished by identifying patterns of behaviour between discrete scalar descriptors associated with crystal and electronic structure and the reported Curie temperature ( T C ) of known compounds; extracting design rules that govern critical structure–property relationships; and discovering in a quantitative fashion the exact role of these materials descriptors. Our approach applies linear manifold methods for data dimensionality reduction to discover the dominant descriptors governing structure–property correlations (the ‘genes’) and Shannon entropy metrics coupled to recursive partitioning methods to quantitatively assess the specific combination of descriptors that govern the link between crystal chemistry and T C (their ‘sequencing’). We use this information to develop predictive models that can suggest new structure/chemistries and/or properties. In this manner, BiTmO 3 –PbTiO 3 and BiLuO 3 –PbTiO 3 are predicted to have a T C of 730 ° C and 705 ° C, respectively. A quantitative structure–property relationship model similar to those used in biology and drug discovery not only predicts our new chemistries but also validates published reports.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3