Abstract
AbstractWe have previously shown that in Arabidopsis the three enzymes of lower glycolysis namely phosphoglycerate mutase (PGAM), enolase and pyruvate kinase form a complex which plays an important role in tethering the mitochondria to the chloroplast. Given that the metabolism of these mutants, the complemented of pgam mutant and overexpression lines of PGAM were unclear, here, we present gas chromatography mass spectrometry-based metabolomics data of them alongside their plant growth phenotypes. Compared with wild type, both sugar and amino acid concentration are significantly altered in phosphoglycerate mutase, enolase and pyruvate kinase. Conversely, overexpression of PGAM could decrease the content of 3PGA, sugar and several amino acids and increase the content of alanine and pyruvate. In addition, the pgam mutant could not be fully complemented by either a nuclear target pgam, a side-directed-mutate of pgam or a the E.coli PGAM in term of plant phenotype or metabolite profiles, suggesting the low glycolysis complete formation is required to support normal metabolism and growth.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献