Metabolite profiling of Arabidopsis mutants of lower glycolysis

Author:

Zhang YoujunORCID,Fernie Alisdair R.

Abstract

AbstractWe have previously shown that in Arabidopsis the three enzymes of lower glycolysis namely phosphoglycerate mutase (PGAM), enolase and pyruvate kinase form a complex which plays an important role in tethering the mitochondria to the chloroplast. Given that the metabolism of these mutants, the complemented of pgam mutant and overexpression lines of PGAM were unclear, here, we present gas chromatography mass spectrometry-based metabolomics data of them alongside their plant growth phenotypes. Compared with wild type, both sugar and amino acid concentration are significantly altered in phosphoglycerate mutase, enolase and pyruvate kinase. Conversely, overexpression of PGAM could decrease the content of 3PGA, sugar and several amino acids and increase the content of alanine and pyruvate. In addition, the pgam mutant could not be fully complemented by either a nuclear target pgam, a side-directed-mutate of pgam or a the E.coli PGAM in term of plant phenotype or metabolite profiles, suggesting the low glycolysis complete formation is required to support normal metabolism and growth.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3