Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics

Author:

Hua QilinORCID,Gao Guoyun,Jiang Chunsheng,Yu Jinran,Sun Junlu,Zhang Taiping,Gao BinORCID,Cheng Weijun,Liang Renrong,Qian He,Hu Weiguo,Sun QijunORCID,Wang Zhong LinORCID,Wu HuaqiangORCID

Abstract

AbstractPower dissipation is a fundamental issue for future chip-based electronics. As promising channel materials, two-dimensional semiconductors show excellent capabilities of scaling dimensions and reducing off-state currents. However, field-effect transistors based on two-dimensional materials are still confronted with the fundamental thermionic limitation of the subthreshold swing of 60 mV decade−1 at room temperature. Here, we present an atomic threshold-switching field-effect transistor constructed by integrating a metal filamentary threshold switch with a two-dimensional MoS2 channel, and obtain abrupt steepness in the turn-on characteristics and 4.5 mV decade−1 subthreshold swing (over five decades). This is achieved by using the negative differential resistance effect from the threshold switch to induce an internal voltage amplification across the MoS2 channel. Notably, in such devices, the simultaneous achievement of efficient electrostatics, very small sub-thermionic subthreshold swings, and ultralow leakage currents, would be highly desirable for next-generation energy-efficient integrated circuits and ultralow-power applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference53 articles.

1. International Technology Roadmap for Semiconductors 2.0 http://www.itrs2.net/itrs-reports.html (2015).

2. Sakurai, T. Perspectives of low-power VLSI’s. IEICE T. Electron. E87C, 429–436 (2004).

3. Chang, L. et al. Practical strategies for power-efficient computing technologies. Proc. IEEE 98, 215–236 (2010).

4. Lundstrom, M. Moore’s law forever? Science 299, 210–211 (2003).

5. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3