Abstract
AbstractElectronic gaps play an important role in the electric and optical properties of materials. Although various experimental techniques, such as scanning tunnelling spectroscopy and optical or photoemission spectroscopy, are normally used to perform electronic band structure characterizations, it is still challenging to measure the electronic gap at the nanoscale under ambient conditions. Here we report a scanning probe microscopic technique to characterize the electronic gap with nanometre resolution at room temperature and ambient pressure. The technique probes the electronic gap by monitoring the changes of the local quantum capacitance via the Coulomb force at a mesoscopic scale. We showcase this technique by characterizing several 2D semiconductors and van der Waals heterostructures under ambient conditions.
Funder
Ministry of Science and Technology of the People's Republic of China
Croucher Foundation
Research Grants Council, University Grants Committee
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献