Abstract
AbstractPatients suffering from debilitating neurodegenerative diseases often lose the ability to communicate, detrimentally affecting their quality of life. One solution to restore communication is to decode signals directly from the brain to enable neural speech prostheses. However, decoding has been limited by coarse neural recordings which inadequately capture the rich spatio-temporal structure of human brain signals. To resolve this limitation, we performed high-resolution, micro-electrocorticographic (µECoG) neural recordings during intra-operative speech production. We obtained neural signals with 57× higher spatial resolution and 48% higher signal-to-noise ratio compared to macro-ECoG and SEEG. This increased signal quality improved decoding by 35% compared to standard intracranial signals. Accurate decoding was dependent on the high-spatial resolution of the neural interface. Non-linear decoding models designed to utilize enhanced spatio-temporal neural information produced better results than linear techniques. We show that high-density µECoG can enable high-quality speech decoding for future neural speech prostheses.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke
U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders
United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献