Intan Technologies integrated circuits can produce analog-to-digital conversion artifacts that affect neural signal acquisition

Author:

Barth KatrinaORCID,Schmitz CeciliaORCID,Jochum ThomasORCID,Viventi JonathanORCID

Abstract

Abstract Objective. Intan Technologies’ integrated circuits (ICs) are valuable tools for neurophysiological data acquisition, providing signal amplification, filtering, and digitization from many channels (up to 64 channels/chip) at high sampling rates (up to 30 kSPS) within a compact package (⩽9× 7 mm). However, we found that the analog-to-digital converters (ADCs) in the Intan RHD2000 series ICs can produce artifacts in recorded signals. Here, we examine the effects of these ADC artifacts on neural signal quality and describe a method to detect them in recorded data. Approach. We identified two types of ADC artifacts produced by Intan ICs: 1) jumps, resulting from missing output codes, and 2) flatlines, resulting from overrepresented output codes. We identified ADC artifacts in neural recordings acquired with Intan RHD2000 ICs and tested the repeated performance of 17 ICs in vitro. With the on-chip digital-signal-processing disabled, we detected the ADC artifacts in each test recording by examining the distribution of unfiltered ADC output codes. Main Results. We found larger ADC artifacts in recordings using the Intan RHX data acquisition software versions 3.0–3.2, which did not run the necessary ADC calibration command when the inputs to the Intan recording controller were rescanned. This has been corrected in the Intan RHX software version 3.3. We found that the ADC calibration routine significantly reduced, but did not fully eliminate, the occurrence and size of ADC artifacts as compared with recordings acquired when the calibration routine was not run (p < 0.0001). When the ADC calibration routine was run, we found that the artifacts produced by each ADC were consistent over time, enabling us to sort ICs by performance. Significance. Our findings call attention to the importance of evaluating signal quality when acquiring electrophysiological data using Intan Technologies ICs and offer a method for detecting ADC artifacts in recorded data.

Funder

National Science Foundation

National Institutes of Health

Department of Defense

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3