Text and image generation from intracranial electroencephalography using an embedding space for text and images

Author:

Ikegawa YuyaORCID,Fukuma RyoheiORCID,Sugano Hidenori,Oshino Satoru,Tani Naoki,Tamura Kentaro,Iimura Yasushi,Suzuki Hiroharu,Yamamoto Shota,Fujita YuyaORCID,Nishimoto Shinji,Kishima Haruhiko,Yanagisawa TakufumiORCID

Abstract

Abstract Objective. Invasive brain–computer interfaces (BCIs) are promising communication devices for severely paralyzed patients. Recent advances in intracranial electroencephalography (iEEG) coupled with natural language processing have enhanced communication speed and accuracy. It should be noted that such a speech BCI uses signals from the motor cortex. However, BCIs based on motor cortical activities may experience signal deterioration in users with motor cortical degenerative diseases such as amyotrophic lateral sclerosis. An alternative approach to using iEEG of the motor cortex is necessary to support patients with such conditions. Approach. In this study, a multimodal embedding of text and images was used to decode visual semantic information from iEEG signals of the visual cortex to generate text and images. We used contrastive language-image pretraining (CLIP) embedding to represent images presented to 17 patients implanted with electrodes in the occipital and temporal cortices. A CLIP image vector was inferred from the high-γ power of the iEEG signals recorded while viewing the images. Main results. Text was generated by CLIPCAP from the inferred CLIP vector with better-than-chance accuracy. Then, an image was created from the generated text using StableDiffusion with significant accuracy. Significance. The text and images generated from iEEG through the CLIP embedding vector can be used for improved communication.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Exploratory Research for Advanced Technology

Moonshot Research and Development Program

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3