Abstract
AbstractEnding all forms of hunger by 2030, as set forward in the UN-Sustainable Development Goal 2 (UN-SDG2), is a daunting but essential task, given the limited timeline ahead and the negative global health and socio-economic impact of hunger. Malnutrition or hidden hunger due to micronutrient deficiencies affects about one third of the world population and severely jeopardizes economic development. Staple crop biofortification through gene stacking, using a rational combination of conventional breeding and metabolic engineering strategies, should enable a leap forward within the coming decade. A number of specific actions and policy interventions are proposed to reach this goal.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference74 articles.
1. White, P. J. & Broadley, M. R. Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182, 49–84 (2009).
2. Fitzpatrick, T. B. et al. Vitamin deficiencies in humans: can plant science help? Plant Cell 24, 395–414 (2012).
3. FAO. FAOSTAT. Food and Agriculture Organization of the United Nations (2017).
4. Ruel-Bergeron J. C. et al. Global update and trends of hidden hunger, 1995-2011: the hidden hunger index. PLoS ONE 10, e0143497 (2015).
5. Beall T., Massiot E., Arsenault J. E., Smith M. R., Hijmans R. J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献