Abstract
AbstractWe propose a highly efficient crosslinking strategy for organic–inorganic hybrid dielectric layers using azide-functionalized acetylacetonate, which covalently connect inorganic particles to polymers, enabling highly efficient inter- and intra-crosslinking of organic and inorganic inclusions, resulting in a dense and defect-free thin-film morphology. From the optimized processing conditions, we obtained an excellent dielectric strength of over 4.0 MV cm−1, a high dielectric constant of ~14, and a low surface energy of 38 mN m−1. We demonstrated the fabrication of exceptionally high-performance, hysteresis-free n-type solution-processed oxide transistors comprising an In2O3/ZnO double layer as an active channel with an electron mobility of over 50 cm2 V−1 s−1, on/off ratio of ~107, subthreshold swing of 108 mV dec−1, and high bias-stress stability. From temperature-dependent I–V analyses combined with charge transport mechanism analyses, we demonstrated that the proposed hybrid dielectric layer provides percolation-limited charge transport for the In2O3/ZnO double layer under field-effect conditions.
Funder
Ministry of Science, ICT and Future Planning
Official name of Funders : Ministry of Science and ICT
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献