Continuous Growth of Crystalline InGaZnO on InLaO by Spray Pyrolysis for High‐Performance Thin‐Film Transistors with Excellent Stability

Author:

Ali Arqum1,Islam Md Mobaidul1,Jang Jin1ORCID

Affiliation:

1. Advanced Display Research Center (ADRC) Department of Information Display Kyung Hee University 26, Kyungheedae‐ro, Dongdaemun‐gu Seoul 02447 South Korea

Abstract

AbstractInGaZnO (IGZO) based thin film transistors (TFTs) are successfully employed in commercial displays due to their excellent electrical properties  but next‐generation displaybackplanes demand higher mobility. A heterojunction structure crystalline oxides can offer superior mobility and stability. Herein, the continuous growth of IGZO is reported on the crystalline InLaO (ILO) layer by spray pyrolysis, which closely resembles the crystalline structure of grown ILO layer. The crystalline structure of the IGZO is confirmed by grazing incidence X‐ray diffraction and high‐resolution transmission electron microscopy. The bilayer IGZO/ILO TFT exhibits remarkable electrical performance, including a high saturation mobility of 55.0 cm2 V−1 s−1, low subthreshold swing of 110 mV dec−1, and high ION/OFF ratio of ≈109 with excellent stability under positive bias temperature stress with In addition, the inverter and ring oscillator based on the IGZO/ILO TFTs demonstrate a high voltage gain of 120 and a low propagation delay of 16.8 ns, respectively. The remarkable performance of bilayer IGZO/ILO TFT by spray pyrolysis is attributed to the In2O3‐like crystalline IGZO grown on ILO film. This leads to reduced lattice mismatch, resulting in minimizing grain boundaries and defects that can hinder electron transport at the interface. The matched crystal structure leads to efficient charge transport at the IGZO and ILO heterojunction, resulting in remarkable TFT performance.

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3