Abstract
AbstractOver recent years, the surge in mobile communication has deepened global connectivity. With escalating demands for faster data rates, the push for higher carrier frequencies intensifies. The 7–20 GHz range, located between the 5G sub-6 GHz and the mm-wave spectra, provides an excellent trade-off between network capacity and coverage, and constitutes a yet-to-be-explored range for 5G and 6G applications. This work proposes a technological platform able to deliver CMOS-compatible, on-chip multi-frequency, low-loss, wide-band, and compact filters for cellular radios operating in this range by leveraging the micro-to-nano scaling of acoustic electromechanical resonators. The results showcase the first-ever demonstrated low insertion loss bank of 7 nanoacoustic passband filters in the X-band. Most of the filters showcase fractional bandwidths above 3% and sub-dB loss per stage in an extremely compact form factor, enabling the manufacturing of filters and duplexers for the next generation of mobile handsets operating in the X-band and beyond.
Funder
United States Department of Defense | Defense Advanced Research Projects Agency
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Park, Y., Adachi, F., editors. Enhanced radio access technologies for next generation mobile communication. Dordrecht: Springer; (2007).
2. History of mobile phones and the first mobile phone, https://www.uswitch.com/mobiles/guides/history-of-mobile-phones, accessed: 07.01.2022.
3. 5G technology and networks (speed, use cases, rollout), https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/inspired/5G#, accessed: 07.01.2022.
4. Holma, Harry and Viswanathan, Harish and Mogenses, Preben Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G, White Paper, (2021).
5. Yu, Y., Zhang, Y. & Zhu, J. Monolithic silicon micromachined Ka-band filters. In 2008 International Conference on Microwave and Millimeter Wave Technology (Vol. 3, pp. 1397–1400). IEEE (2008).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献