Abstract
AbstractThe powerful capability of reconfigurable intelligent surfaces (RISs) in tailoring electromagnetic waves and fields has put them under the spotlight in wireless communications. However, the current designs are criticized due to their poor frequency selectivity, which hinders their applications in real-world scenarios where the spectrum is becoming increasingly congested. Here we propose a filtering RIS to feature sharp frequency-selecting and 2-bit phase-shifting properties. It permits the signals in a narrow bandwidth to transmit but rejects the out-of-band ones; meanwhile, the phase of the transmitted signals can be digitally controlled, enabling flexible manipulations of signal propagations. A prototype is designed, fabricated, and measured, and its high quality factor and phase-shifting characteristics are validated by scattering parameters and beam-steering phenomena. Further, we conduct a wireless communication experiment to illustrate the intriguing functions of the RIS. The filtering behavior enables the RIS to perform wireless signal manipulations with anti-interference ability, thus showing big potential to advance the development of next-generation wireless communications.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218–e218 (2014).
2. Yang, H. et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 6, 35692 (2016).
3. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).
4. Zhang, N. et al. Programmable coding metasurface for dual-band independent real-time beam control. IEEE J. Emerg. Sel. Top. Power Electron. 10, 20–28 (2020).
5. Taravati, S. & Eleftheriades, G. V. Programmable nonreciprocal meta-prism. Sci. Rep. 11, 7377 (2021).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献