Affiliation:
1. State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University Nanjing 210096 China
2. Institute of Electromagnetic Space Southeast University Nanjing 210096 China
Abstract
AbstractHarmonic generation and utilization are significant topics in nonlinear science. Although the progress in the microwave region has been expedited by the development of time‐modulated metasurfaces, one major issue of these devices is the strong entanglement of multiple harmonics, leading to criticism of their use in frequency‐division multiplexing (FDM) applications. Previous studies have attempted to overcome this limitation, but they suffer from designing complexity or insufficient controlling capability. Here a new space‐time‐coding metasurface (STCM) is proposed to independently and precisely synthesize not only the phases but also the amplitudes of various harmonics. This promising feature is successfully demonstrated in wireless space‐ and frequency‐division multiplexing experiments, where modulated and unmodulated signals are simultaneously transmitted via different harmonics using a shared STCM. To illustrate the advantages, binary frequency shift keying (BFSK) and quadrature phase shift keying (QPSK) modulation schemes are respectively implemented. Behind the intriguing functionality, the mechanism of the space‐time coding strategy and the analytical designing method are elaborated, which are validated numerically and experimentally. It is believed that the achievements can potentially propel the time‐vary metasurfaces in the next‐generation wireless applications.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Higher Education Discipline Innovation Project