Reconfigurable Metasurface with Multiple Functionalities of Frequency‐Selective Rasorber, Frequency‐Selective Surface, Absorber, and Reflector

Author:

Yang Rui12ORCID,Luo Zhangjie12,Liang Jing Cheng12,Dai Jun Yan123,Cheng Qiang123ORCID,Cui Tie Jun123

Affiliation:

1. State Key Laboratory of Millimeter Waves Southeast University Nanjing 210096 China

2. Institute of Electromagnetic Space Southeast University Nanjing 210096 China

3. Frontiers Science Center for Mobile Information Communication and Security Southeast University Nanjing 210096 China

Abstract

AbstractMulti‐functional metasurfaces have shown great promise in tackling complex electromagnetic issues. Reconfigurable frequency‐selective Rasorbers (FSRs) have recently received growing attraction, but existing designs are constrained in their switchable modes, typically limited to FSR/Absorber or FSR/frequency‐selective surface (FSS). To address this limitation, a new metasurface that integrates four different functioning modes, including FSR, FSS, Absorber, and Reflector is proposed, which can be dynamically switched as demanded. The design is based on the theoretical network model analysis, and its intriguing performances are verified through simulations and experiments both in frequency and time domains. The results show that the FSR and Absorber modes exhibit wide low‐scattering bandwidths with narrow transmission windows that can be turned on or off. These two modes also eliminate the sputtering effect, making it suitable for stealth applications. In contrast, the Reflector mode is efficient in blocking microwaves across a broad spectrum, and a transmission window can be opened in the FSS mode. It is believed this multi‐functional metasurface can serve as a radome to protect against various challenges such as detection, interference, and high‐power invasion.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3