Separation of scales and a thermodynamic description of feature learning in some CNNs

Author:

Seroussi InbarORCID,Naveh Gadi,Ringel Zohar

Abstract

AbstractDeep neural networks (DNNs) are powerful tools for compressing and distilling information. Their scale and complexity, often involving billions of inter-dependent parameters, render direct microscopic analysis difficult. Under such circumstances, a common strategy is to identify slow variables that average the erratic behavior of the fast microscopic variables. Here, we identify a similar separation of scales occurring in fully trained finitely over-parameterized deep convolutional neural networks (CNNs) and fully connected networks (FCNs). Specifically, we show that DNN layers couple only through the second cumulant (kernels) of their activations and pre-activations. Moreover, the latter fluctuates in a nearly Gaussian manner. For infinite width DNNs, these kernels are inert, while for finite ones they adapt to the data and yield a tractable data-aware Gaussian Process. The resulting thermodynamic theory of deep learning yields accurate predictions in various settings. In addition, it provides new ways of analyzing and understanding DNNs in general.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference53 articles.

1. Jacot, A., Gabriel, F. & Hongler, C. Neural tangent kernel: convergence and generalization in neural networks. Adv. Neural Inf. Process. Syst. 31, 8571–8580 (2018).

2. de G. Matthews, A. G., Hron, J., Rowland, M., Turner, R. E. & Ghahramani, Z. Gaussian process behaviour in wide deep neural networks. In International Conference on Learning Representations (2018).

3. Naveh, G., Ben David, O., Sompolinsky, H. & Ringel, Z. Predicting the outputs of finite deep neural networks trained with noisy gradients. Phys. Rev. E 104, 064301 (2021).

4. Li, Y., Yosinski, J., Clune, J., Lipson, H. & Hopcroft, J. Convergent learning: Do different neural networks learn the same representations? In Proc. 1st International Workshop on Feature Extraction: Modern Questions and Challenges at NIPS 2015, vol. 44 of Proc. Machine Learning Research (eds Storcheus, D., Rostamizadeh, A. & Kumar, S.) 196–212 (PMLR, Montreal, Canada, 2015).

5. Chizat, L., Oyallon, E. & Bach, F. On lazy training in differentiable programming. Adv. Neural Inf. Process. Syst. 32, 2937–2947 (2019).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3