Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints
-
Published:2020-09-11
Issue:1
Volume:11
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Sansaloni CarolinaORCID, Franco Jorge, Santos BrunoORCID, Percival-Alwyn Lawrence, Singh SukhwinderORCID, Petroli Cesar, Campos Jaime, Dreher KateORCID, Payne Thomas, Marshall DavidORCID, Kilian Benjamin, Milne IainORCID, Raubach SebastianORCID, Shaw PaulORCID, Stephen GordonORCID, Carling Jason, Pierre Carolina SaintORCID, Burgueño Juan, Crosa JoséORCID, Li HuiHui, Guzman CarlosORCID, Kehel Zakaria, Amri Ahmed, Kilian Andrzej, Wenzl Peter, Uauy CristobalORCID, Banziger Marianne, Caccamo MarioORCID, Pixley KevinORCID
Abstract
AbstractUndomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.
Funder
Newton Fund MasAgro- Sustainable Modernization of Traditional Agriculture CGIAR Research Program WHEAT SADER
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference74 articles.
1. Goel, S., Yadav, M., Singh, K., Jaat, R. S. & Singh, N. K. Exploring diverse wheat germplasm for novel alleles in HMW-GS for bread quality improvement. J. Food Sci. Technol. 55, 3257–3262 (2018). 2. Velu, G., Singh, R. P., Huerta, J. & Guzmán, C. Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. F. Crop. Res. 214, 373–377 (2017). 3. Heuzé, V., Tran, G., Renaudeau, D., Lessire, M. & Lebas, F. Wheat Grain. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO https://www.feedipedia.org/node/223 (2015). 4. Talebnia, F., Karakashev, D. & Angelidaki, I. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101, 4744–4753 (2010). 5. Swain, M. & Mohanty, S. Bioethanol Production From Corn and Wheat: Food, Fuel, and Future 1st edn, 45–59 (Academic, 2018).
Cited by
151 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|