High Arctic channel incision modulated by climate change and the emergence of polygonal ground

Author:

Chartrand Shawn M.ORCID,Jellinek A. Mark,Kukko AnteroORCID,Galofre Anna Grau,Osinski Gordon R.,Hibbard Shannon

Abstract

AbstractStream networks in Arctic and high-elevation regions underlain by frozen ground (i.e., permafrost) are expanding and developing in response to accelerating global warming, and intensifying summertime climate variability. The underlying processes governing landscape dissection in these environments are varied, complex and challenging to unravel due to air-temperature-regulated feedbacks and shifts to new erosional regimes as climate change progresses. Here we use multiple sources of environmental information and physical models to reconstruct and understand a 60-year history of landscape-scale channelization and evolution of the Muskox Valley, Axel Heiberg Island. A time series of air photographs indicates that freeze-thaw-related polygon fields can form rapidly, over decadal time scales. Supporting numerical simulations show that the presence of polygons can control how surface runoff is routed through the landscape, exerting a basic control on channelization, which is sensitive to the timing, duration and magnitude of hydrograph events, as well as seasonal air temperature trends. These results collectively highlight that the occurrence and dynamics of polygon fields modulate channel network establishment in permafrost-rich settings undergoing changes related to a warming climate.

Funder

Gouvernement du Canada | Canadian Space Agency

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Permafrost extent sets drainage density in the Arctic;Proceedings of the National Academy of Sciences;2024-02

2. Drainage network response to Arctic warming;Nature Communications;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3