Permafrost extent sets drainage density in the Arctic

Author:

Del Vecchio Joanmarie12ORCID,Palucis Marisa C.1ORCID,Meyer Colin R.3

Affiliation:

1. Department of Earth Sciences, Dartmouth College, Hanover, NH 03755

2. Neukom Institute for Computational Science, Dartmouth College, Hanover, NH 03755

3. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755

Abstract

Amplified warming of high latitudes and rapid thaw of frozen ground threaten permafrost carbon stocks. The presence of permafrost modulates water infiltration and flow, as well as sediment transport, on soil-mantled slopes, influencing the balance of advective fluvial processes to diffusive processes on hillslopes in ways that are different from temperate settings. These processes that shape permafrost landscapes also impact the carbon stored on soil-mantled hillslopes via temperature, saturation, and slope stability such that carbon stocks and landscape morphometry should be closely linked. We studied > 69,000 headwater basins between 25° and 90 °N to determine whether the thermal state of the soil sets the balance between hillslope (diffusive) and fluvial (advective) erosion processes, as evidenced by the density of the channel networks (i.e., drainage density) and the proportion of convex to concave topography (hillslopes and river valleys, respectively). Watersheds within permafrost regions have lower drainage densities than regions without permafrost, regardless of watershed glacial history, mean annual precipitation, and relief. We find evidence that advective fluvial processes are inhibited in permafrost landscapes compared to their temperate counterparts. Frozen soils likely inhibit channel development, and we predict that climate warming will lower incision thresholds to promote growth of the channel network in permafrost landscapes. By demonstrating how the balance of advective versus diffusive processes might shift with future warming, we gain insight into the mechanisms that shift these landscapes from sequestering to exporting carbon.

Funder

National Science Foundation

National Aeronautics and Space Administration

DOD | USA | AFC | CCDC | Army Research Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3