Rapid Ice‐Wedge Collapse and Permafrost Carbon Loss Triggered by Increased Snow Depth and Surface Runoff

Author:

Parmentier Frans‐Jan W.1ORCID,Nilsen Lennart2,Tømmervik Hans3ORCID,Meisel Ove H.45,Bröder Lisa6ORCID,Vonk Jorien E.5,Westermann Sebastian1ORCID,Semenchuk Philipp R.7ORCID,Cooper Elisabeth J.2ORCID

Affiliation:

1. Center for Biogeochemistry of the Anthropocene Department of Geosciences University of Oslo Oslo Norway

2. Department of Arctic and Marine Biology UiT–The Arctic University of Norway Tromsø Norway

3. Norwegian Institute for Nature Research FRAM ‐ High North Research Centre for Climate and the Environment Tromsø Norway

4. School of Geographical Sciences University of Bristol Bristol UK

5. Department of Earth Sciences Faculty of Earth and Life Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands

6. Department of Earth Sciences ETH Zürich Zürich Switzerland

7. Department of Arctic Biology UNIS–The University Centre in Svalbard Longyearbyen Norway

Abstract

AbstractThicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we show that a snow fence experiment on High‐Arctic Svalbard inadvertently led to surface subsidence through warming, and extensive downstream erosion due to increased surface runoff. Within a decade of artificially raised snow depths, several ice wedges collapsed, forming a 50 m long and 1.5 m deep thermo‐erosion gully in the landscape. We estimate that 1.1–3.3 tons C may have eroded, and that the gully is a hotspot for processing of mobilized aquatic carbon. Our results show that interactions among snow, runoff and permafrost thaw form an important driver of soil carbon loss, highlighting the need for improved model representation.

Funder

Norges Forskningsråd

Framsenteret

DigitalGlobe Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3