Abstract
AbstractAn in-depth understanding of the dislocations motion process in non-metallic materials becomes increasingly important, stimulated by the recent emergence of ceramics and semiconductors with unexpected room temperature dislocation-mediated plasticity. In this work, local misfit energy is put forward to accurately derive the Peierls stress and model the dislocation process in SrTiO3 ceramics instead of the generalized stacking fault (GSF) approach, which considers the in-plane freedom degrees of the atoms near the shear plane and describes the breaking and re-bonding processes of the complex chemical bonds. Particularly, we discover an abnormal shear-dependence of local misfit energy, which originates from the re-bonding process of the Ti-O bonds and the reversal of lattice dipoles. In addition, this approach predicts that oxygen vacancies in the SrTiO3 can facilitate the nucleation and activation of dislocations with improvement of fracture toughness, owing to the reduction of average misfit energy and Peierls stress due to the disappearance of lattice dipole reversal. This work provides undiscovered insights into the dislocation process in non-metallic materials, which may bring implications to tune the plasticity and explore unknown ductile compositions.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献