Ductile inorganic semiconductors for deformable electronics

Author:

Li Xiaocui12ORCID,Chen Fu‐Rong12,Lu Yang3ORCID

Affiliation:

1. Department of Materials Science and Engineering City University of Hong Kong, Kowloon Hong Kong China

2. Time‐resolved Aberration Corrected Environmental Electron Microscope Unit City University of Hong Kong, Kowloon Hong Kong China

3. Department of Mechanical Engineering The University of Hong Kong, Pokfulam Hong Kong China

Abstract

AbstractTraditionally, it is relatively easy to process metal materials and polymers (plastics), while ceramic and inorganic semiconductor materials are hard to process, due to their intrinsic brittleness caused by directional covalent bonds or the strong electrostatic interactions among ionic species. The brittleness of semiconductor materials, which may degrade their functional performance and cause catastrophic failures, has excluded them from many application scenarios. The exploration on room‐temperature ductile semiconductors has been a long pursuit of mankind for fabricating deformable and more robust electronics. Guided by this goal, researchers have already found that the plasticity of brittle semiconductors can be enhanced by size effects, which include fewer pre‐existing micro‐cracks and increased dislocation activity, charge characteristics, and defect density. It has also been explored that a few quasi‐layered/van der Waals semiconductors can have exceptional room‐temperature metal‐like plasticity, enabled by the relatively weak interlayer bonding and easy interlayer gliding. More recently, intrinsic exceptional plasticity has been found in a group of all‐inorganic perovskites (CsPbX3, X = Cl, Br and I), which can be morphed into distinct morphologies through multislip at room temperature, without affecting their functional properties and bandgap energy. Based on the above research status, in this review, we will discuss and present the relevant works on the plasticity found in inorganic semiconductors and the proposed deformation mechanisms. The potential applications and bottlenecks of plastic semiconductors in manufacturing next‐generation deformable electronic/optoelectronic devices and energy systems will also be discussed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3