Abstract
AbstractNonlinear interactions of spin-waves and their quanta, magnons, have emerged as prominent candidates for interference-based technology, ranging from quantum transduction to antiferromagnetic spintronics. Yet magnon multiplication in the terahertz (THz) spectral region represents a major challenge. Intense, resonant magnetic fields from THz pulse-pairs with controllable phases and amplitudes enable high order THz magnon multiplication, distinct from non-resonant nonlinearities such as the high harmonic generation by below-band gap electric fields. Here, we demonstrate exceptionally high-order THz nonlinear magnonics. It manifests as 7th-order spin-wave-mixing and 6th harmonic magnon generation in an antiferromagnetic orthoferrite. We use THz two-dimensional coherent spectroscopy to achieve high-sensitivity detection of nonlinear magnon interactions up to six-magnon quanta in strongly-driven many-magnon correlated states. The high-order magnon multiplication, supported by classical and quantum spin simulations, elucidates the significance of four-fold magnetic anisotropy and Dzyaloshinskii-Moriya symmetry breaking. Moreover, our results shed light on the potential quantum fluctuation properties inherent in nonlinear magnons.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献