Two-dimensional coherent spectrum of high-spin models via a quantum computing approach

Author:

Mootz MartinORCID,Orth Peter PORCID,Huang Chuankun,Luo LiangORCID,Wang JigangORCID,Yao Yong-XinORCID

Abstract

Abstract We present and benchmark a quantum computing approach to calculate the two-dimensional coherent spectrum (2DCS) of high-spin models. Our approach is based on simulating their real-time dynamics in the presence of several magnetic field pulses, which are spaced in time. We utilize the adaptive variational quantum dynamics simulation algorithm for the study due to its compact circuits, which enables simulations over sufficiently long times to achieve the required resolution in frequency space. Specifically, we consider an antiferromagnetic quantum spin model that incorporates Dzyaloshinskii-Moriya interactions and single-ion anisotropy. The obtained 2DCS spectra exhibit distinct peaks at multiples of the magnon frequency, arising from transitions between different eigenstates of the unperturbed Hamiltonian. By comparing the one-dimensional coherent spectrum with 2DCS, we demonstrate that 2DCS provides a higher resolution of the energy spectrum. We further investigate how the quantum resources scale with the magnitude of the spin using two different binary encodings of the high-spin operators: the standard binary encoding and the Gray code. At low magnetic fields both encodings require comparable quantum resources, but at larger field strengths the Gray code is advantageous. Numerical simulations for spin models with increasing number of sites indicate a polynomial system-size scaling for quantum resources. Lastly, we compare the numerical 2DCS with experimental results on a rare-earth orthoferrite system. The observed strength of the magnonic high-harmonic generation signals in the 2DCS of the quantum high-spin model aligns well with the experimental data, showing significant improvement over the corresponding mean-field results.

Funder

National Energy Technology Laboratory

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3