Coherent Transfer of Lattice Entropy via Extreme Nonlinear Phononics in Metal Halide Perovskites

Author:

Liu Z.12ORCID,Shi Y.3,Jiang T.12,Luo L.12ORCID,Huang C.12,Mootz M.12ORCID,Song Z.4,Yan Y.4,Yao Y.12ORCID,Zhao J.3,Wang J.12ORCID

Affiliation:

1. Ames National Laboratory

2. Iowa State University

3. University of Science and Technology of China (USTC)

4. The University of Toledo

Abstract

Entropy transfer in metal halide perovskites, characterized by significant lattice anharmonicity and low stiffness, underlies the remarkable properties observed in their optoelectronic applications, ranging from solar cells to lasers. The conventional view of this transfer involves stochastic processes occurring within a thermal bath of phonons, where the lattice arrangement and energy flow from higher- to lower-frequency modes. Here, we unveil a comprehensive chronological sequence detailing a conceptually distinct coherent transfer of entropy in a prototypical perovskite CH3NH3Pbl3. The terahertz periodic modulation imposes vibrational coherence into electronic states, leading to the emergence of mixed (vibronic) quantum beat between approximately 3 and 0.3 THz. We highlight a well-structured bidirectional time-frequency transfer of these diverse phonon modes, each developing at different times and transitioning from high to low frequencies from 3 to 0.3 THz, before reversing direction and ascending to around 0.8 THz. First-principles molecular dynamics simulations disentangle a complex web of coherent-phononic coupling pathways and identify the salient roles of the initial modes in shaping entropy evolution at later stages. Capitalizing on coherent entropy transfer and dynamic anharmonicity presents a compelling opportunity to exceed the fundamental thermodynamic (Shockley-Queisser) limit of photoconversion efficiency and to pioneer novel optoelectronic functionalities. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences, Materials Science and Engineering Division

U.S. Air Force Research Laboratory, Space Vehicles Directorate

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3