Abstract
AbstractUnderstanding lattice dynamics is crucial for effective thermal management in electronic devices because phonons dominate thermal transport in most semiconductors. α-GaN has become a focus of interest as one of the most important third-generation power semiconductors, however, the knowledge on its phonon dynamics remains limited. Here we show a Matryoshka phonon dispersion of α-GaN with the complementary inelastic X-ray and neutron scattering techniques and the first-principles calculations. Such Matryoshka twinning throughout the basal plane of the reciprocal space is demonstrated to amplify the anharmonicity of the related phonons through creating abundant three-phonon scattering channels and cutting the lifetime of affected modes by more than 50%. Such phonon topology contributes to reducing the in-plane thermal transport, thus the anisotropic thermal conductivity of α-GaN. The results not only have implications for engineering the thermal performance of α-GaN, but also offer valuable insights on the role of anomalous phonon topology in thermal transport of other technically semiconductors.
Funder
Beijing Institute of Technology
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
UC University of California, Riverside
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献