Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems

Author:

Douglas Thomas A.ORCID,Turetsky Merritt R.,Koven Charles D.ORCID

Abstract

AbstractEarth’s high latitudes are projected to experience warmer and wetter summers in the future but ramifications for soil thermal processes and permafrost thaw are poorly understood. Here we present 2750 end of summer thaw depths representing a range of vegetation characteristics in Interior Alaska measured over a 5 year period. This included the top and third wettest summers in the 91-year record and three summers with precipitation close to mean historical values. Increased rainfall led to deeper thaw across all sites with an increase of 0.7 ± 0.1 cm of thaw per cm of additional rain. Disturbed and wetland sites were the most vulnerable to rain-induced thaw with ~1 cm of surface thaw per additional 1 cm of rain. Permafrost in tussock tundra, mixed forest, and conifer forest was less sensitive to rain-induced thaw. A simple energy budget model yields seasonal thaw values smaller than the linear regression of our measurements but provides a first-order estimate of the role of rain-driven sensible heat fluxes in high-latitude terrestrial permafrost. This study demonstrates substantial permafrost thaw from the projected increasing summer precipitation across most of the Arctic region.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3