Simulation and Projection of Arctic Freshwater Budget Components by the IPCC AR4 Global Climate Models

Author:

Kattsov Vladimir M.1,Walsh John E.2,Chapman William L.3,Govorkova Veronika A.1,Pavlova Tatyana V.1,Zhang Xiangdong2

Affiliation:

1. Voeikov Main Geophysical Observatory, St. Petersburg, Russia

2. International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

3. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Abstract

Abstract The state-of-the-art AOGCM simulations have recently (late 2004–early 2005) been completed for the Intergovernmental Panel on Climate Change (IPCC) in order to provide input to the IPCC’s Fourth Assessment Report (AR4). The present paper synthesizes the new simulations of both the twentieth- and twenty-first-century arctic freshwater budget components for use in the IPCC AR4, and attempts to determine whether demonstrable progress has been achieved since the late 1990s. Precipitation and its difference with evapotranspiration are addressed over the Arctic Ocean and its terrestrial watersheds, including the basins of the four major rivers draining into the Arctic Ocean: the Ob, the Yenisey, the Lena, and the Mackenzie. Compared to the previous [IPCC Third Assessment Report (TAR)] generation of AOGCMs, there are some indications that the models as a class have improved in simulations of the Arctic precipitation. In spite of observational uncertainties, the models still appear to oversimulate area-averaged precipitation over the major river basins. The model-mean precipitation biases in the Arctic and sub-Arctic have retained their major geographical patterns, which are at least partly attributable to the insufficiently resolved local orography, as well as to biases in large-scale atmospheric circulation and sea ice distribution. The river discharge into the Arctic Ocean is also slightly oversimulated. The simulated annual cycle of precipitation over the Arctic Ocean is in qualitative agreement between the models as well as with observational and reanalysis data. This is also generally the case for the seasonality of precipitation over the Arctic Ocean’s terrestrial watersheds, with a few exceptions. Some agreement is demonstrated by the models in reproducing positive twentieth-century trends of precipitation in the Arctic, as well as positive area-averaged P–E late-twentieth-century trends over the entire terrestrial watershed of the Arctic Ocean. For the twenty-first century, three scenarios are considered: A2, A1B, and B1. Precipitation over the Arctic Ocean and its watersheds increases through the twenty-first century, showing much faster percentage increases than the global mean precipitation. The arctic precipitation changes have a pronounced seasonality, with the strongest relative increase in winter and fall, and the weakest in summer. The river discharge into the Arctic Ocean increases for all scenarios from all major river basins considered, and is generally about twice as large as the increase of freshwater from precipitation over the Arctic Ocean (70°–90°N) itself. The across-model scatter of the precipitation increase for each scenario is significant, but smaller than the scatter between the climates of the different models in the baseline period.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Sea ice evolution over the 20th and 21st centuries as simulated by the current AOGCMs.;Arzel;Ocean Modell.,2006

2. Application of a comprehensive bias-correction model to precipitation measured at Russian North Pole drifting stations.;Bogdanova;J. Hydrometeor.,2002

3. Yearly mean precipitation in the Arctic region accounting for measurement errors (in Russian).;Bryazgin;Proc. Arct. Ant. Res. Inst.,1976

4. Simulations of Arctic temperature and pressure by global coupled models.;Chapman;J. Climate,2007

5. Measurements of precipitation and snow pack at Russian North Pole drifting stations.;Colony;Polar Rec.,1998

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3