Rainfall Impacts Dissolved Organic Matter and Cation Export From Permafrost Catchments and a Glacial River During Late Summer in Northeast Greenland

Author:

Fouché Julien1ORCID,Hirst Catherine2,Bonneville Steeve3,Opfergelt Sophie2,Haghipour Negar45,Eglinton Timothy I.4,Vonk Jorien E.6,Bröder Lisa4

Affiliation:

1. LISAH, Univ Montpellier, AgroParisTech, INRAE, Institut Agro, IRD Montpellier France

2. Earth and Life Institute Université Catholique de Louvain Louvain‐la‐Neuve Belgium

3. Department of Geosciences, Environment and Society Université Libre de Bruxelles Bruxelles Belgium

4. Geological Institute, Department of Earth Sciences Swiss Federal Institute of Technology (ETH) Zürich Switzerland

5. Laboratory of ion Beam Physics Swiss Federal Institute of Technology (ETH) Zürich Switzerland

6. Department of Earth Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands

Abstract

ABSTRACTOngoing and amplified climate change in the Arctic is leading to glacier retreat and to the exposure of an ever‐larger portion of non‐glaciated permafrost‐dominated landscapes. Warming will also cause more precipitation to fall as rain, further enhancing the thaw of previously frozen ground. Yet, the impact of those perturbations on the geochemistry of Arctic rivers remains a subject of debate. Here, we determined the geochemical composition of waters from various contrasting non‐glacial permafrost catchments and investigated their impact on a glacially dominated river, the Zackenberg River (Northeast Greenland), during late summer (August 2019). We also studied the effect of rainfall on the geochemistry of the Zackenberg River, its non‐glacial tributaries, and a nearby independent non‐glacial headwater stream Grænse. We analyzed water properties, quantified and characterized dissolved organic matter (DOM) using absorbance and fluorescence spectroscopy and radiocarbon isotopes, and set this alongside analyses of the major cations (Ca, Mg, Na, and K), dissolved silicon (Si), and germanium/silicon ratios (Ge/Si). The glacier‐fed Zackenberg River contained low concentrations of major cations, dissolved Si and dissolved organic carbon (DOC), and a Ge/Si ratio typical of bulk rock. Glacial DOM was enriched in protein‐like fluorescent DOM and displayed relatively depleted radiocarbon values (i.e., old DOM). Non‐glacial streams (i.e., tributaries and Grænse) had higher concentrations of major cations and DOC and DOM enriched in aromatic compounds. They showed a wide range of values for radiocarbon, Si and Ge/Si ratios associated with variable contributions of surface runoff relative to deep active layer leaching. Before the rain event, Zackenberg tributaries did not contribute notably to the solute export of the Zackenberg River, and supra‐permafrost ground waters governed the supply of solutes in Zackenberg tributaries and Grænse stream. After the rain event, surface runoff modified the composition of Grænse stream, and non‐glacial tributaries strongly increased their contribution to the Zackenberg River solute export. Our results show that summer rainfall events provide an additional source of DOM and Si‐rich waters from permafrost‐underlain catchments to the discharge of glacially dominated rivers. This suggests that the magnitude and composition of solute exports from Arctic rivers are modulated by permafrost thaw and summer rain events. This event‐driven solute supply will likely impact the carbon cycle in rivers, estuaries, and oceans and should be included into future predictions of carbon balance in these vulnerable Arctic systems.

Funder

European Commission

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3