Abstract
AbstractAcenes and azaacenes lie at the core of molecular materials’ applications due to their important optical and electronic features. A critical aspect is provided by their heteroatom multiplicity, which can strongly affect their properties. Here we report pyrazinacenes containing the dihydro-decaazapentacene and dihydro-octaazatetracene chromophores and compare their properties/functions as a model case at an oxidizing metal substrate. We find a distinguished, oxidation-state-dependent conformational adaptation and self-assembly behaviour and discuss the analogies and differences of planar benzo-substituted decaazapentacene and octaazatetracene forms. Our broad experimental and theoretical study reveals that decaazapentacene is stable against oxidation but unstable against reduction, which is in contrast to pentacene, its C–H only analogue. Decaazapentacenes studied here combine a planar molecular backbone with conformationally flexible substituents. They provide a rich model case to understand the properties of a redox-switchable π-electronic system in solution and at interfaces. Pyrazinacenes represent an unusual class of redox-active chromophores.
Funder
MEXT | Japan Society for the Promotion of Science
MEXT | National Institute for Materials Science
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献