Protic Processes in an Extended Pyrazinacene: The Case of Dihydrotetradecaazaheptacene

Author:

Cador Aël12,Kahlal Samia2,Richards Gary J.3ORCID,Halet Jean-François24ORCID,Hill Jonathan P.5ORCID

Affiliation:

1. French Alternative Energies and Atomic Energy Commission, CEA Saclay, DRF/IRAMIS/NIMBE/LSDRM, F-91191 Gif-sur-Yvette, France

2. Ecole Nationale Supérieure de Chimie de Rennes (ENSCR), CNRS, Institut des Sciences Chimiques de Rennes (ISCR), University of Rennes, UMR 6226, 11 Allée de Beaulieu, F-35708 Rennes, France

3. Department of Applied Chemistry, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi 337-8570, Saitama, Japan

4. CNRS–Saint-Gobain–NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Ibaraki, Japan

5. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba 305-0044, Ibaraki, Japan

Abstract

Pyrazinacenes are linearly fused heteroaromatic rings, with N atoms replacing all apical CH moieties. Component rings may exist in a reduced state, having NH groups instead of N, causing cross-conjugation. These compounds have interesting optical and electronic properties, including strong fluorescence in the near-infrared region and photocatalytic properties, leading to diverse possible applications in bio-imaging and organic synthesis, as well as obvious molecular electronic uses. In this study, we investigated the behavior of seven-ring pyrazinacene 2,3,11,12-tetraphenyl-7,16-dihydro-1,4,5,6,7,8,9,12,13,14,15,16,17,18-tetradecaazaheptacene (Ph4H2N14HEPT), with an emphasis on protic processes, including oxidation, tautomerism, deprotonation, and protonation, and the species resulting from those processes. We used computational methods to optimize the structures of the different species and generate/compare molecular orbital structures. The aromaticity of the species generated by the different processes was assessed using the nucleus-independent chemical shifts, and trends in the values were associated with the different transformations of the pyrazinacene core. The computational data were compared with experimental data obtained from synthetic samples of the molecule tBu8Ph4H2N14HEPT.

Funder

GENCI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3