Investigation on energy bandgap states of amorphous SiZnSnO thin films

Author:

Lee Byeong Hyeon,Cho Kyung-Sang,Lee Doo-Yong,Sohn Ahrum,Lee Ji Ye,Choo Hyuck,Park Sungkyun,Kim Sang-Woo,Kim Sangsig,Lee Sang Yeol

Abstract

AbstractThe variation in energy bandgaps of amorphous oxide semiconducting SiZnSnO (a-SZTO) has been investigated by controlling the oxygen partial pressure (Op). The systematic change in Op during deposition has been used to control the electrical characteristics and energy bandgap of a-SZTO. As Op increased, the electrical properties degraded, while the energy bandgap increased systematically. This is mainly due to the change in the oxygen vacancy inside the a-SZTO thin film by controlling Op. Changes in oxygen vacancies have been observed by using X-ray photoelectron spectroscopy (XPS) and investigated by analyzing the variation in density of states (DOS) inside the energy bandgaps. In addition, energy bandgap parameters, such as valence band level, Fermi level, and energy bandgap, were extracted by using ultraviolet photoelectron spectroscopy, Kelvin probe force microscopy, and high-resolution electron energy loss spectroscopy. As a result, it was confirmed that the difference between the conduction band minimum and the Fermi level in the energy bandgap increased systematically as Op increases. This shows good agreement with the measured results of XPS and DOS analyses.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3