An appearance quality classification method for Auricularia auricula based on deep learning

Author:

Li Yang,Hu Jiajun,Wu Haiyun,Wei Yong,Shan Huiyong,Song Xin,Hua Xiuping,Xu Wei,Jiang Yongcheng

Abstract

AbstractThe intelligent appearance quality classification method for Auricularia auricula is of great significance to promote this industry. This paper proposes an appearance quality classification method for Auricularia auricula based on the improved Faster Region-based Convolutional Neural Networks (improved Faster RCNN) framework. The original Faster RCNN is improved by establishing a multiscale feature fusion detection model to improve the accuracy and real-time performance of the model. The multiscale feature fusion detection model makes full use of shallow feature information to complete target detection. It fuses shallow features with rich detailed information with deep features rich in strong semantic information. Since the fusion algorithm directly uses the existing information of the feature extraction network, there is no additional calculation. The fused features contain more original detailed feature information. Therefore, the improved Faster RCNN can improve the final detection rate without sacrificing speed. By comparing with the original Faster RCNN model, the mean average precision (mAP) of the improved Faster RCNN is increased by 2.13%. The average precision (AP) of the first-level Auricularia auricula is almost unchanged at a high level. The AP of the second-level Auricularia auricula is increased by nearly 5%. And the third-level Auricularia auricula AP is increased by 1%. The improved Faster RCNN improves the frames per second from 6.81 of the original Faster RCNN to 13.5. Meanwhile, the influence of complex environment and image resolution on the Auricularia auricula detection is explored.

Funder

the Scientific Research Program of Tianjin Education Commission

Key R & D projects of Heilongjiang Province

the Tianjin Enterprise Science and Technonogy Commisioner Program

Key R & D projects of Hebei Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3