Enhanced mixing efficiency and reduced droplet size with novel droplet generators

Author:

Kheirkhah Barzoki Ali

Abstract

AbstractNowadays, droplet microfluidics has become widely utilized for high-throughput assays. Efficient mixing is crucial for initiating biochemical reactions in many applications. Rapid mixing during droplet formation eliminates the need for incorporating micromixers, which can complicate the chip design. Furthermore, immediate mixing of substances upon contact can significantly improve the consistency of chemical reactions and resulting products. This study introduces three innovative designs for droplet generators that achieve efficient mixing and produce small droplets. The T-cross and cross-T geometries combine cross and T junction mixing mechanisms, resulting in improved mixing efficiency. Numerical simulations were conducted to compare these novel geometries with traditional T and cross junctions in terms of mixing index, droplet diameter, and eccentricity. The cross-T geometry exhibited the highest mixing index and produced the smallest droplets. For the flow rate ratio of 0.5, this geometry offered a 10% increase in the mixing index and a decrease in the droplet diameter by 10% compared to the T junction. While the T junction has the best mixing efficiency among traditional droplet generators, it produces larger droplets, which can increase the risk of contamination due to contact with the microchannel walls. Therefore, the cross-T geometry is highly desirable in most applications due to its production of considerably smaller droplets. The asymmetric cross junction offered a 8% increase in mixing index and around 2% decrease in droplet diameter compared to the conventional cross junction in flow rate ratio of 0.5. All novel geometries demonstrated comparable mixing efficiency to the T junction. The cross junction exhibited the lowest mixing efficiency and produced larger droplets compared to the cross-T geometry (around 1%). Thus, the novel geometries, particularly the cross-T geometry, are a favorable choice for applications where both high mixing efficiency and small droplet sizes are important.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3