Optimization of passive micromixers: effects of pillar configuration and gaps on mixing efficiency

Author:

Kheirkhah Barzoki Ali

Abstract

AbstractChemical bioreactions play a significant role in many of the microfluidic devices, and their applications in biomedical science have seen substantial growth. Given that effective mixing is vital for initiating biochemical reactions in many applications, micromixers have become increasingly prevalent for high-throughput assays. In this research, a numerical study using the finite element method was conducted to examine the fluid flow and mass transfer characteristics in novel micromixers featuring an array of pillars. The study utilized two-dimensional geometries. The impact of pillar configuration on mixing performance was evaluated using concentration distribution and mixing index as key metrics. The study explores the effects of pillar array design on mixing performance and pressure drop, drawing from principles such as contraction–expansion and split-recombine. Two configurations of pillar arrays, slanted and arrowhead, are introduced, each undergoing investigation regarding parameters such as pillar diameter, gap size between pillar groups, distance between pillars, and vertical shift in pillar groups. Subsequently, optimal micromixers are identified, exhibiting mixing efficiency exceeding 99.7% at moderate Reynolds number (Re = 1), a level typically challenging for micromixers to attain high mixing efficiency. Notably, the pressure drop remains low at 1102 Pa. Furthermore, the variations in mixing index over time and across different positions along the channel are examined. Both configurations demonstrate short mixing lengths and times. At a distance of 4300 μm from the inlet, the slanted and arrowhead configurations yielded mixing indices of 97.2% and 98.9%, respectively. The micromixers could provide a mixing index of 99.5% at the channel’s end within 8 s. Additionally, both configurations exceeded 90% mixing indices by the 3 s. The combination of rapid mixing, low pressure drop, and short mixing length positions the novel micromixers as highly promising for microfluidic applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3