Laser slice thinning of GaN-on-GaN high electron mobility transistors

Author:

Tanaka Atsushi,Sugiura Ryuji,Kawaguchi Daisuke,Wani Yotaro,Watanabe Hirotaka,Sena Hadi,Ando Yuto,Honda Yoshio,Igasaki Yasunori,Wakejima Akio,Ando Yuji,Amano Hiroshi

Abstract

AbstractAs a newly developed technique to slice GaN substrates, which are currently very expensive, with less loss, we previously reported a laser slicing technique in this journal. In the previous report, from the perspective of GaN substrate processing, we could only show that the GaN substrate could be sliced by a laser and that the sliced GaN substrate could be reused. In this study, we newly investigated the applicability of this method as a device fabrication process. We demonstrated the thinning of GaN-on-GaN high-electron-mobility transistors (HEMTs) using a laser slicing technique. Even when the HEMTs were thinned by laser slicing to a thickness of 50 μm after completing the fabrication process, no significant fracture was observed in these devices, and no adverse effects of laser-induced damage were observed on electrical characteristics. This means that the laser slicing process can be applied even after device fabrication. It can also be used as a completely new semiconductor process for fabricating thin devices with thicknesses on the order of 10 μm, while significantly reducing the consumption of GaN substrates.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3