Response of soil structure and crop yield to soft rock in Mu Us sandy land, China

Author:

Zhang Jian,Guo Zhen

Abstract

AbstractThe sandy land leaks water and fertilizer, and is seriously degraded, while the soft rock has a special depression structure, which plays a role in retaining water and fertilizer. The application of soft rock new material to sand reclamation can improve the ecological environment and ensure the quality of basic cultivated land. The soft rock and sand were mixed in different volume ratios (1:0, 11:1, 5:1, 4:1, 3:1, 2:1, 7:5, 1:1, 5:7, 1:2, 1:3, 1:4, 1:5, 1:11, 0:1) to prepare the composite soil, and its Raman spectrum characteristics, microstructure, texture composition and potato yield were studied. The results show that there are more silt and clay particles in the soft rock and more coarse particles in the sand. The peak position of the sand is 464.5 cm−1. With the increase of the content of the soft rock, the peak position decreases gradually. When the content of the soft rock accounts for more than 50%, the soil structure collapses and also becomes compact, at the same time the compressive stress is generated between the soil particles. When the ratio of soft rock to sand is 1:1, the soil texture is loam. The potato yield of the soil with the ratio of 1:5 of soft rock and sand cover increases significantly by 4.89–37.31% and 4.08–35.95% compared with that of 1:1 and 1:2 compound soils. Under the condition of 1:1 and 1:2 compounded ratio of soft rock and sand, there are more cementitious materials between the soil particles generated. The compounded ratio 1:5 is most suitable ratio for potato growth of local economic crop. The results confirmed that the Raman spectroscopy characteristics of SiO2 molecules can be used to study the cementation force between composite soil particles. When the compound ratio is 1:5, the soil improvement of Mu Us sandy land and the high yield of potatoes can be achieved, which could also provides a theoretical basis for sandy land remediation.

Funder

The Shaanxi Provincial Natural Science Basic Research Program Project

Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3