Internal Force Mechanism of Pisha Sandstone as a Soil Amendment to Improve Sandy Soil Structural Stability in Mu Us Sandy Land

Author:

Liu Zhe123,Zhou Lin4,Zhang Yang123,Han Jichang123,Sun Yingying123,Zhang Ruiqing123,Li Xuxiang1,Hu Feinan4

Affiliation:

1. Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd. and Xi’an Jiaotong University, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China

3. Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China

4. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Xianyang 712100, China

Abstract

Compounding Pisha sandstone (PSS) with sandy soil in Mu Us Sandy Land is a viable agronomical measure to effectively reduce soil erosion and improve soil quality due to the complementary characters and structures of the two materials. Aggregate stability is an important indicator to assess sandy soil erosion resistance and quality, which could be largely affected by soil surface electrochemical properties and particle interaction forces. However, the effect of the compound ratio and particle interaction forces on the aggregate stability of compound soils with Pisha sandstone and sandy soil is still unclear. Therefore, in this study, the electrochemical properties, particle interaction forces, and their effects on the aggregate stability of PSS and sandy soil at five volume ratios (0:1, 1:5, 1:2, 1:1, and 1:0) were determined to clarify the internal force mechanism of PSS to increase sandy soil structural stability in a 10-year field experiment. Experiments were measured by a combined method for the determination of surface properties and aggregate water stability. A ten-year field study revealed that the incorporation of Pisha sandstone significantly enhanced the soil organic carbon (SOC) and cation exchange capacity (CEC) (p < 0.05), while the CEC value notably increased from 4.68 to 13.76 cmol·kg−1 (p < 0.05). The soil surface potential (absolute value) and the electric field intensity gradually decreased with the increase in the Pisha sandstone content. For the compound soil particle interaction force, the addition of Pisha sandstone enhanced the van der Waals attraction force, reduced the net repulsive force between compound soil particles, and promoted the agglomeration of aeolian sandy soil. The overall trend of the aggregate breaking strength of compound soils under different addition ratios of PSS was 1:0 > 1:1 > 0:1 > 1:5 > 1:2. When the Pisha sandstone content in the compound soils was <50%, the aggregate stability was mainly influenced by compound soil particle interaction forces, and the interaction force increase was the key reason for the aggregate breakdown. When the Pisha sandstone content in the compound soils was ≥50%, the aggregate stability was affected by the combined effects of the compound soil particle composition and particle interaction forces. These results indicate that PSS addition ratios and particle interaction force are important factors affecting the structural stability of compound soils, in which the volume ratio of PSS to sandy soil of 1:2 is the appropriate ratio. Our study provides some theoretical references for further understanding of the compound soil structure improvement and sandy soil erosion control in Mu Us Sandy Land.

Funder

National Natural Science Foundation of China

Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd. and Xi’an Jiaotong University

Natural Science Basic Research Program of Shaanxi

Scientific Research Item of Shaanxi Provincial Land Engineering Construction Group

Publisher

MDPI AG

Reference44 articles.

1. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors;Liang;Catena,2016

2. Definition of arsenic rock zone borderline and its classification;Wang;Sci. Soil Water Conserv.,2007

3. Permian and Triassic paleomagnetism of the southwestern Tien Shan: Timing and mode of tectonic rotations;Bazhenov;Earth Planet. Sci. Lett.,1993

4. Pisha sandstone: Causes, processes and erosion options for its control and prospects;Liang;Int. Soil Water Conserv. Res.,2019

5. Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia;Guo;J. Groundw. Sci. Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3